1. 軟體的簡介:

GeoGebra 是一套由 Java 程式語言所開發、免費和跨平台的動態數學自 由軟體。它是由美國佛羅里達州亞特蘭大學的數學教授 Markus Hohenwarter 及一個國際程式設計團隊所共同開發,設計的軟體,GeoGebra 就是「幾何 Geometry」加「代數 Algebra」的意思。它可以用在幾何、代 數、微積分與統計等領域。

由於 Java 是一個跨平台的語言,所以 GeoGebra 可以在不同的系統上執 行,例如 Windows、MacOS、Linux 等系統;較新版本的 GeoGebra 開始使 用 HTML5,所以目前在 iPad、 Android 或這類的平板電腦上亦有測試版 可執行,Google Chrome 上也有 GeoGebra 的 App,但目前功能還很有限。

這套軟體曾經獲得許多項國際性的大獎,包括歐洲及德國教育軟體大獎。另一方面,GeoGebra為一套動態的幾何系統。你可以用點、向量、 線段、直線、多邊形、圓錐曲線、和函數來作圖,事後你還可以改變它們 的屬性,並隨後動態修改。另一方面來說,你也可以直接輸入方程式或座 標,所以GeoGebra也有處理變數的能力。例如數字、角度、向量、或是 點座標。它也可以對函數作微分與積分,找出方程式的根或計算函數的極 大極小值。

GeoGebra 視窗有一個「代數區」、「幾何區」(也稱為「主繪圖 區」)、一個「副繪圖區」、一個試算表與一個運算區;可以任意切換選 擇需要的視窗。目前的版本是 5.0.50。

2. 軟體使用前的準備:

要執行 GeoGebra 程式或觀看 GeoGebra 檔案前,請先確定你的電腦中已經 安裝 Java 執行環境,否則將無法執行或觀看。你可以依你的作業系統與瀏 覽器下載不同的 java,例如 32 位元的 win7 IE 或 64 位元的 win7 IE, java for Chrome, java for Mac 等等。<u>安裝版</u>:可安裝於電腦中,執行時不需有 網路,也不會檢查有沒有新版本,所以優點是啟動速度較快,缺點是執行 的可能不是最新版。<u>可攜版</u>:可將檔案存於隨身碟中,不需安裝,可用於 任何電腦,所以優點是可隨身攜帶、啟動速度較快,缺點是執行的可能不

是最新版、可攜版檔案所佔空間較大(大約70MB,因為包含整個Java執行套件)。

- 3. 如何在網頁上看 GeoGebra 檔: 通常放在網路上的多已經輸出成 Java Applet 形式,所以只要電腦有安裝 <u>Java 執行環境</u>,便可以在 IE 瀏覽器直接看 GeoGebra 製作的成品。較新版 本的 Java 也有支援其他瀏覽器,如 Google Chrome。 但是若要看 GeoGebra 製作的原始檔(ggb 檔)時,你的電腦就必須有 GeoGebra 執行程式。
- 4. 工具列簡介

圖示	名稱	使用方法
		1. 移動物件:以滑鼠拖曳就可以移動「自變物件」。
\searrow	移動	2. 選取物件:用滑鼠左鍵按一下,就可以選取單一物件。
		3. 删除物件:選取物件後,按Del 删除。
	轉動	首先選取選轉的中心點,然後可以以此點為中心,用滑鼠拖
1	-1-1- <i>3-1</i> 1	曳自變物件來轉動它。
36	紀錄到試算	此工具能夠在物件移動的同時,並將該物件的變化數值紀錄
12 45	表	在試算表區中,此工具僅能使用在數值、點、向量。
• ^A	新點	在繪圖區按下滑鼠左鍵以新增點。
	內點或邊點	
	附著/脫離點	
\searrow	交點	1. 點選兩物件 ⇒ (盡可能)產生兩物件的所有交點。
$\overline{}$		2. 點選兩物件的交點 ➡ 只產生此一交點。
		1. 選兩點 ⇒ 找出其中點;
••	中心點	2. 選一線段 ➡ 找出其中點;
		3. 選一圓錐曲線 ⇒ 找出其中心。
●Z	複數	

××	直線	選兩點 A 和 B 作直線,此線的方向向量即為 (B-A)
1	線段(過兩點)	選兩點 A 和 B,並調整線段長度,即可在代數區中顯示線段 長度。
a	線段(指定起點 與長度)	點選線段的起點 A,並在出現的視窗中指定想要的長度。
•*	射線(過兩點)	點選兩點 A和 B,作出起點從 A 到 B 的射線,在代數區中即 可看到相關直線的方程式。
X	折線圖	
*	向量(過兩點)	選取向量的起點和終點。
1	向量(指定起 點、向量)	選點 A 及一向量 v 以建立點 B=A+v,可以做出從 A 到 B 的向 量。
t	垂直線	點選出一直線 g 和一點 A,產生一直線通過 A 且垂直於 g, 此線的方向向量即等於 g 之法向量。
•	平行線	點選出一直線 g 和一點 A, 可畫出一直線通過 A 且平行於 g, 此線的方向向量即為直線 g 的方向向量。
\times	中垂線	通過一線段 s 或兩點 A 和 B 的中點並垂直於此線段的直線, 此線的方向即等於線段 s 或 AB 的法向量。
\checkmark	角平分線	 1. 選出三點A,B,C,便作出以∠ABC(B為頂點)的角平分線。 2. 選出兩條線,便作出所夾兩角的平分線。
Ą	切線	 選一點 A 及一圓錐曲線 c,便作出通過 A 且切於 c 的所有 切線 選一線g及一圓錐曲線c,便作出平行於g且切於c的所有切 線。 選一點 A 及一函數f,便作出f在 x=x(A)的切線。
<u>%</u>	極線或徑線	 點選一點及一圓錐曲線以作出極線。 點選直線或一向量及一圓錐曲線以作出徑線。
;/*	迴歸線	 建立選取方塊使其包含點集裡頭的所有點。 選取點的串列建立相對應於的最適直線。

	軌跡	點選一個會隨著點 A 而變的點 B,然後點選 A,便畫出 B 的
Δ.		軌跡。
•	夕 、鳥 T/	標出至少三個點當做多邊形的頂點,然後再按下第一個點以
	夕遼形	圍成一多邊形,在代數區中可看見多邊形的面積。
1	工名》息以	點選兩點 A 和 B,並在出現的對話方塊中輸入一整數 n,即
	正夕透心	得到一個有 n 個頂點的正多邊形 (包括點 A 和 B)
	剛體多邊形	
	向量多邊形	
	圓(指定圓心與	點選出一點 M 和一點 P, 可畫出一圓心為 M 且通過點 P 的
•	一點)	圓,此圓的半徑即為 MP 的距離。
	圓(指定圓心與半	點選圓心後,在出現的視窗中輸入半徑。
\bigcirc	徑數值)	
•	圓(指定圓心,	選取一線段或兩點作為半徑,然後點擊一點作為新圓的圓
_	半徑長)	心。
	圓(過三點)	點選出三點 A,B,C,可畫出通過此三點的圓。若這三點在一
\bigcirc		直線上,此圓即退化為直線。
C.	半圓	點選兩點 A 和 B,在線段 AB 上作出一個半圓。
•	圓弧(指定圓心	點選三點 M, A 和 B, 作出圓心為 M, 起點為 A 終點為 B 的
•)	與兩點)	圓弧。
$\mathbf{\hat{\mathbf{C}}}$	圓 弧(過三點)	點選三點作出通過此三點的圓弧。
	扇形(指定圓心	點選三點 M, A 和 B, 作出圓心為 M, 起點為 A 終點為 B 的
\sim	與兩點)	扇形。
\sim	扇形(過三點)	點選三點作出通過此三點的扇形。
\mathbf{O}	橢圓	選取兩點作為橢圓的焦點,然後選定第三點在此橢圓上。
	Att 11 14	選取兩點作為雙曲線的焦點,然後選定第三點在此雙曲線
• •	雙曲線	上。
	抛物線	選定一點和拋物線的準線。

\bigcirc	圓錐曲線(過 五點)	點選五個點,作出通過此五點的圓錐曲線。
J.	測量角度	可測量出:1. 三點間的角度。2. 兩線段間的角度。3. 兩直限
1		線間的角度。4. 兩向量間的角度。5. 多邊形的所有內角。
	畫指定角	點選兩點 A,B,並於對話方塊中輸入角度的大小,此工具作
1		出點C及角度α,其中α為角ABC。
cm	測量距離	此工具可測量出兩點、兩直線、或一點與一直線的距離,亦
-		可求出線段的長度及圓周。
	測量面積	測量出多邊形、圓、或橢圓的面積。
	計算斜率	测量出直線的斜率
{ 1,2 }	新增串列	
•	線對稱	先選取進行線對稱的物件,然後點擊直線指定為對稱線。
•••	點對稱	先選取進行點對稱的物件,然後點擊點指定為對稱點。
(•	反演	此工具的功能可以讓一個點對一個圓進行反演。先選取進行
• `		反演的點,然後點擊圓指定為反演圓。
• 4	旋轉	先選取進行旋轉的物件,然後點擊點指定為旋轉中心,在出
193		現的對話視窗的文字方塊輸入旋轉角度。
1	平移	先選取進行平移的物件,然後點擊平移的向量。
k .•	伸縮	先選取進行伸縮的物件,再點擊伸縮中心,然後在出現的對
••		話視窗的文字方塊輸入指定伸縮倍率。
ABC	插入文字	產生靜態文字、動態文字、或 LaTeX 數學式。
*	插入圖片	插入圖片
	手寫筆	
?	判斷物件關	點選兩物件以得知其關係。
a=b	係	
	機率計算器	

J.	函數檢視器	
a=2	數值滑桿	在繪圖區的任意位置按下滑鼠,可建立數值或角度的滑桿。
		了設足共取入值、取小值。
	勾選框	方境。
OK	按紐	
a = 1	輸入欄位	
	移動繪圖區	以滑鼠拖曳繪圖區來移動坐標系統的原點。
€ (放大	在繪圖區中任意處按下滑鼠以拉近視窗。
୍	縮小	在繪圖區中任意處按下滑鼠以拉遠視窗。
٥	顯示或隱藏	在啟動此工具後選取欲顯示或隱藏的物件。在切換到其他工
0	物件	具之後,物件的可見狀態便會改變。
ΑΑ	顯示或隱藏	按下物件以顯示或隱藏其名稱。
~~	名稱	
~	複製格式	選取想複製其樣式的物件,然後再點選其它物件。可將一物
	IX ALL A	件的樣式(顏色、大小、線的樣式)複製到數個其他的物件。
	删除物件	按下欲删除的物件。

5. Geogebra 快捷輸入

alt- = -> not equals	alt-m -> mu
alt- + -> plus or minus	alt-o -> degree sign
alt> superscript minus	alt-p -> pi
alt-< -> less than or equal	alt-s -> sigma
alt-> -> greater than or equal	alt-t -> theta
alt-, -> less than or equal	alt-w -> omega
alt> greater than or equal	alt-0 -> to the power of 0
alt-a -> alpha	alt-1 -> to the power of 1
alt-b -> beta	alt-2 -> to the power of 2
alt-d -> delta	alt-3 -> to the power of 3
alt-e -> Euler e	alt-4 -> to the power of 4
alt-f -> phi	alt-5 -> to the power of 5
alt-g -> gamma	alt-6 -> to the power of 6
alt-u -> infinity	alt-7 -> to the power of 7
alt-i -> constant representing sqrt(-1)	alt-8 -> to the power of 8
alt-l -> lambda	alt-9 -> to the power of 9

6. 代數輸入

在GeoGebra中,我們可以使用視窗底部的「指令列」來直接輸入代數式,輸入完 畢後記得按下Enter建執行代數式。下表為常用的代數式輸入方法:

主題	動作、數學式	指令列語法(輸入完畢後按 Enter 執行)
點坐標	A(1,2)	A=(1,2)
		點坐標必須是大寫字母開頭
極坐標	<i>P</i> [2,30°]	P=(2;30°)
		點坐標必須是大寫字母開頭
複數坐標	B(2+3i)	B=2+3i
		點坐標必須是大寫字母開頭
向量(點坐標表示)	v = (1,3)	v=(1,3)
		向量必須是小寫字母開頭
向量(極坐標表示)	$p[1,\frac{\pi}{n}]$	p=(1;alt-p/3)
		向量必須是小寫字母開頭
向量(複數坐標表示)	q = -1 + 2i	q=-1+2i
		向量必須是小寫字母開頭

7. 高中數學常使用的代數指令

主題	動作、數學式	指令列語法(輸入完畢後按 Enter 執行)
f上一點 P		P=Point[f]
AB 線段		Segment[A,B]
AB 射線		Ray[A,B]
AB 直線		Line[A,B]
AB 向量		Vector[A,B]
$\angle ABC$		Angle[A,B,C]
多邊形		Polygon[A,B,C]
折線		Polyline[A,B,C,A]
平移		Translate[物件,向量]
旋轉		Rotate[物件,角度,旋轉中心]
伸縮		Dilate[物件, 縮放倍數, 縮放中心]
對稱		Reflect[物件,點]、Reflect[物件,直線]、
		Reflect[物件,線段]、Reflect[物件,射線]
乘法	數字(式子)乘法×、向量內積.	* 或 空白鍵
乘法(數字)	$a = 5 \times 3 + 2012$	a = 5*3+2012
乘法(內積)	$(2,3) \cdot (-3,2)$	(2,3)*(-3,2)
次方	2 ³	2^3
二階行列式	$\begin{vmatrix} 2 & 3 \\ -3 & 2 \end{vmatrix}$	(2,3) ⊗ (-3,2)
乘法(複數)	$(2+3i)\times(3-2i)$	(2+3i)*(3-2i)
階乘	5!	5!
取出點的 x 坐標	取出點 P 的 x 坐標	x(P)
取出點的 y 坐標	取出點 P 的 y 坐標	y(P)
商數	整數a除以整數b的商數	Div[a,b]
餘數(模數)	整數a除以整數b的餘數	Mod[a,b]

		藍邦偉老師編授
最大公因數	整數a與整數b的最大公因數	GCD[a,b]
最小公倍數	整數a與整數b的最小公倍數	LCM[a,b]
四捨五入	取最接近a的整數	Round(a)
絕對值	-23	abs(-23)
組合數	C_{2}^{5}	BinomialCoefficient[5,2]
正負號(性質符號)		sgn()
根號		sqrt()
立方根		cbrt()
0到1的隨機數		random()
a到b的隨機數	整數a與整數b之間的隨機數	Randombetween(a,b)
集合中隨機排序		Shuffle[<list>]</list>
函數f的定義域為	$f(x) = x^2, -2 \le x \le 1$	Function[x ² ,-2,1]
[a,b]		
如果	If[條件,a]: 若條件為真時可得 a, 為	If[condition,a]
	假時則未定義	
如果	If[條件,a,b]: 若條件為真時可得 a,	if[condition,a,b]
	為假時可得 b	
曲線	$\begin{cases} x = 2\cos t \\ y = \sin t \end{cases}, 0 \le t < 2\pi$	Curve[x(2cos(t)),y(sin(t)),t,0,2 pi]
指數函數	2 ^x	2^x
指數函數	e ^x	exp(x)
對數(以e為底)		ln()
對數(以2為底)		ld()
對數(以10為底)		lg()
對數(以 a 為底)	$\log_a x$	Log(a,x)或 Log[a,x]
正弦函數		sin()
餘弦函數		cos()

		藍邦偉老師編授
正切函數		tan()
餘切函數		cot()
正割函數		sec()
餘割函數		csc()
反正弦函數		asin()或 arcsin()
反餘弦函數		acos()或 arccos()
反正切函數		atan()或 arctan()
上高斯函數		ceil()
下高斯函數		floor(x)
多項式	$y = 2x^2 - 4x + 3$	y=2x^2-4x+3
一次函數	f(x) = 3x - 2	f(x) = -3x - 2
二次函數	$f(x) = 2x^2 + 3x + 1$	$f(x)=2 x^2+3 x+1$
三次函數	$f(x) = -2x^3 + 4x^2 - 3$	$f(x) = -2x^3 + 4x^2 - 3$
最高公因式	求兩多項式 $f(x)$ 與 $g(x)$ 的最高公因	HCF[f(x),g(x)]
	式	
最低公倍式	求兩多項式 $f(x)$ 與 $g(x)$ 的最低公倍	LCM[f(x),g(x)]
	式	
f(x)的一階導函數	$\int f'(x)$	Derivative[f]
	f'(x)	Derivative[f(x)]
	$\int f'(x)$	f'(x)
f(x)的二階導函數	f''(x)	Derivative[f(x),2]
	f''(x)	f''(x)
f(x)的三階導函數	$\int f'''(x)$	Derivative[f(x),3]
	f'''(x)	f'''(x)
最小值	取 a,b 中較小者	Min[a,b]
最大值	取 a,b 中較大者	Max[a,b]
最小值	取集合 list 中最小者	Min[list]

	藍邦偉老師編授	
最大值	取集合 list 中最大者	Max[list]
分點比	$\frac{\overline{AC}}{\overline{AB}}$	Affineratio[A,B,C]
f(x)的 n 階導函數	$f^{(n)}(x)$	Derivative[f,n]
將 f(x) 展開	將 $f(x)$ 的括號乘開	Expand[f(x)]
	展開 (<i>x</i> +1)(<i>x</i> +2)(<i>x</i> +3)	Expand[$(x+1)(x+2)(x+3)$]
	將多項式 f(x) 展開	Polynomial[f(x)]
將 f(x) 因式分解	將多項式 f(x) 因式分解	Factor[f(x)]
	因式分解 x^2-4x+3	Factor[x^2-4x+3]
插值多項式	過(1,2),(3,4)(4,-1)三點的二次多項式	Polynomial[(1,2),(3,4)(4,-1)]
化簡 f(x)	將 <i>f</i> (x) 化簡	Simplify[f(x)]
	化簡 <i>x</i> +2 <i>x</i> +3 <i>x</i>	Simplify[x+2x+3x]
	化簡 $\frac{\sin x}{\cos x}$	Simplify[sin(x) / cos(x)]
	化簡-2sin x cos x	Simplify[-2 $sin(x) cos(x)$]
泰勒展開式	f(x)對 $x = a$ 的 n 次泰勒展開式	TaylorPolynomial[f(x), a, n]
分段函數	$f(x) = \begin{cases} \sin x & x < 3\\ x^2 & x \ge 3 \end{cases}$	$f(x) = If[x < 3, sin(x), x^2]$
限制函數的定義域	$f(x) = x^2 + x + 1, -2 \le x \le 3$	$f(x) = Function[x^2+x+1,-2,3]$
上和	f(x)在[-2,3]分割成10等份的上和	UpperSum[f(x),-2,3,10]
下和	f(x)在[-2,3]分割成10等份的下和	LowerSum[f,-2,3,10]
梯形和	f(x)在[-2,3]分割成10等份的梯形和	TrapezoidalSum[f,-2,3,10]
f(x)的反導函數 常數為0	$\int f(x)dx$	Integral[f(x)]
f(x)的定積分	$\int_{-2}^{3} f(x) dx$	Integral[f(x),-2,3]
	$\int_{-2}^{3} x^3 dx$	Integral[x^3,-2,3]
	f(x) 與 g(x) 在區間[a,b]的面積	Integral[f(x),g(x), a,b]

		藍邦偉老師編授
多項式 $f(x)$ 的反曲	找出 $f(x) = x^4 - x^2 + x + 1$ 的反曲點	InflectionPoint[f]
點		
多項式 $f(x)$ 的所有	找出 $f(x) = x^4 - x^2 + x + 1$ 的所有根	Root[f]
根		
牛頓法找函數	以牛頓法找出函數 $f(x)$ 以 $x = a$ 為起	Root[f(x),a]
f(x) = 0的一根	始值的一根	
多項式 $f(x)$ 的極值	找出多項式 $f(x)$ 的所有極值發生的點	Extremum[f]
圓錐曲線c的頂點		Vertex[c]
複數A的主幅角		$\theta = \arg(A)$
數列	列出 $\left\{\frac{1}{2^n}\right\}$ 的前十項	Sequence[(n,(1/2)^n),n,1,10]
取出集合 list 中的第		Element[list,k]
k個元素		
刪除集合 list 中未定		RemoveUndefined[list]
義的元素		
	計算集合 list 中, 满足條件式的元素	Countif[條件,list]
	附加物件在集合 list 的前面	Append[物件,list]
	附加物件在集合 list 的後面	Append[list 物件]
和		Sum[list]
算術平均數		Mean[list]
中位數		Median[list]
眾數		Mode[list]
$\sum_{i=1}^{n} x_i$		MeanX[點集合 list]
$\sum_{i=1}^{n} \mathcal{Y}_{i}$		MeanY[點集合 list]
$\sum_{i=1}^{n} x_i^2$		SigmaXX[點集合 list]
$\sum_{i=1}^{n} y_i^2$		SigmaYY[點集合 list]

	藍邦偉老師編授
$\sum_{i=1}^n x_i y_i$	SigmaXY[點集合 list]
$\sum_{i=1}^n (x_i - \mu_x)^2$	Sxx[點集合 list]
$\sum_{i=1}^n (y_i - \mu_y)^2$	Syy[點集合 list]
$\sum_{i=1}^n (x_i - \mu_x)(y_i - \mu_y)$	Sxy[點集合 list]
相關係數	CorrelatioCoefficient[點集合 list]
相關係數	CorrelatioCoefficient[list1,list2]
迴歸直線	FitLine[點集合 list]
直方圖	Histogram[list1(範圍界限),list2(高度)]
直方圖	Histogram[list1(範圍界限),list2(原始資料)]
長條圖	BarChart[list1(位置),list2(高度),w(長條
長條圖	BarChart[起始值 a,終止值 b,長條高度
	f(k),參數 k,數值 k1,數值 k2,間隔值 s]

實例製作

1. 座標軸的建立

(1) $A=(-5,0)$, $B=(8,0)$, $C=(0,-5)$, $D=(0,8)$								
u=Vector[A,B] , v=Vector[C,D]								
☆ GeoGebra 種類: 編輯 後期 张扬 服用 工具 預留 設用 ▶ ▲ ▲ ▲ ▶ ○ ② ④ № Acc 平二 中 移動 上目 c・								
2 u=Vector[(-5,0),(8,0)] · v=Vector[(0,-5),(0,8)]								
☆ GeoGebra 「「「「「」」」 「」 「」 「「」 「「」 「「」 「「」 「」 「」 「」								
③ u=Vector[(x(corner[1]),0),(x(corner[3]),0)]								
v=Vector[(0,y(corner[1])),(0,y(corner[3]))] · O=(0,0))							
4- 3- 2-								
1- - 								
-31- -2-								
۰۰ ۲۰ (۲۰)								

- 2. 函數與曲線繪圖
 - (1) 指數函數
 - (1) $f_1(x) = 2^x$: $f_1(x) = 2^x x$

② $f_2(x) = 2^{-x}$: $f_2(x) = 2^{-(-x)}$ $\leq f_2(x) = f_1(-x)$

🗘 GeoGebra	1001					_	х
		ABC -	±] ↔ 8	đđ			1
□ .	\	Ì					
		7-					
		5-					
	\	4-					
	/	3-					
		2-					
		T					
-8 -7 -6	-5 -4 -3 -2	-1 0 1	2 3	4 5	6	7 8	9
		-1 -					
		-2 -					
輸入:						¢	۲

③ $f_3(x) = -2^x$: $f_3(x) = -2^x x$ 或 $f_3(x) = -f_1(x)$

④
$$f_4(x) = -2^{-x}$$
: $f_4(x) = -2^{-x}(-x)$ $\underset{d}{=} f_4(x) = -f_1(-x)$

(5) $f_5(x) = 2^x + 2^{-x}$: $f_5(x) = 2^x + 2^{-(x)}$

6 $f_6(x) = 2^{|x|}$: $f_6(x) = 2^{\text{abs}(x)}$

(7) $f_7(x) = 2^{-|x|}$: $f_7(x) = 2^{-(x)}(-abs(x))$

 $(8) f_8(x) = (1/3)^x : f_8(x) = (1/3)^x$

(2) 對數函數

① $f_1(x) = \log_2 x$: $f_1(x) = ld(x)$ $\underset{f_1(x)=lg(x)/lg(2)}{\text{ ds}}$ $\underset{f_1(x)=log[2,x]}{\text{ f}}$

② $f_2(x) = \log x$: $f_2(x) = \log(x)$ 或 $f_2(x) = \log(2,x)$

③
$$f_3(x) = \ell n x : f_3(x) = \ln(x)$$

(4) $f_4(x) = \log_3 x$: $f_4(x) = \frac{lg(x)}{lg(3)}$

⑤ $f_5(x) = \log_2(-x)$: $f_5(x) = ld(-x)$ 或 $f_5(x) = f_1(-x)$

⑥
$$f_6(x) = -\log_2 x$$
 : $f_6(x) = -\operatorname{Id}(x)$ 或 $f_6(x) = -f_1(x)$

(7) $f_7(x) = -\log_2(-x)$: $f_7(x) = -Id(-x)$ $\underset{f_7(x)=-f_1(-x)}{\text{f}_7(x)}$

 $(8) f_8(x) = |\log_2 x| : \frac{f_8(x) = abs(ld(x))}{f_8(x) = abs(ld(x))}$

(9) $f_9(x) = \log_2 |x|$: $f_9(x) = ld(abs(x))$

(1) $f_{10}(x) = \log_{\frac{1}{3}} x$: $f_{10}(x) = \frac{\log(x)}{\log(x)}$

(3) 多項式函數

(1) $f_1(x) = x^3 - 4x^2 + 2x + 3$:

$f_1(x) = x^3 - 4x^2 + 2x + 3$,	Max[f_1, -1,2] ,	Min[f_1, -1,2]
Geodebra 福米 編輯 松岡 格時 提現 工具 視習 說明 ● <		
6 - 5 - 4 - Mad(,-1,2]		
-7 -6 -5 -4 -3 -2 -1 0 0 1 2 6 4 -1- -2-	ĠġġŢŢŢġŢ	
輸入	+	

₲ ©Geogebra 研習講義

藍邦偉老師編授

(2) $f_2(x) = -x^3 - 2x^2 + 3x - 4, -4 \le x \le 3$: $f(x) = -x^3 - 2x^2 + 3x - 4$, $f_2(x) = Function[f_3, 1]$, Extremum[f_2] • InflectionPoint[f_2] ; ((3) $f_3(x) = -\frac{1}{3}x^2 + 3x + 4, \alpha \le x \le \beta$: alt+a=-3 , alt+b=2 , $g(x) = -(1/3)x^2 + 3x + 1$, $f_3(x) = Function[g, \alpha, \beta]$ _ 🗆 🗙 ☞顯示圖形 _____G=3 α=-3.2 β = 1.9 輸入: g(x)=-(1/3)x³+3x+1 $\textcircled{4} f_4(x) = x^n :$

n=2, $f_4(x)=x^n$

(6) $y-2 = \tan \theta(x-1)$:

⑦ 通過 A,B,C,D 四點多項函數 f₇(x):

(4) 絕對值函數
$$f_1(x) = \frac{1}{2}|x+1|+|x-3|$$

$$f_2(x) = \begin{cases} -x, \, x < 0 \\ x^2, \, x \ge 0 \end{cases}$$

 $f_2(x) = If[x < 0, -x, x^2]$

$$f_3(x) = \begin{cases} -x+1, x < -1 \\ x^2+1, -1 \le x < 2 \\ \cos x, x \ge 2 \end{cases}$$

 $f_3(x)=if[x<-1,-x+1,if[x>=2,cos(x),x^2+1]]$

\$

藍邦偉老師編授

输入